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1.5.7 Non-nested tests (advanced) 
It is commonly the case that there are alternative ways of specifying a SPARROW model. For example, 

suppose that two alternative SPARROW models, of identical functional form, use different data sets to 
characterize a given source variable; perhaps one model uses fertilizer sales to characterize the fertilizer nitrogen 
source, whereas the other model uses an estimate that corrects the sales information for exports associated with 
the sale of agricultural products. Another example would be the case in which there are two potential 
specifications for the in-stream decay process: one process uses the discrete streamflow classes approach 
whereas the other process uses the continuous function of streamflow approach (see section 1.4.4). The question 
arises: which is the better specification? 

The nature of the question just raised poses a challenge for hypothesis testing. The classical hypothesis 
test investigates the effect on model fit caused by a restriction on the model; that is, the model conforming to the 
null hypothesis is nested within a more general model specification. As such, the hypothesis is tested by 
determining the effect on model fit from a restriction imposed on the model. The null hypothesis of a non-nested 
test, conversely, cannot be structured in this way; first the model is restricted, to negate the alternative 
specification, and then the model is appended to include the specification corresponding to the null hypothesis. 
Indeed, the entire classification of specifications into nulls and alternatives is somewhat arbitrary. Clearly, a 
different testing framework is needed to address this question.  

The following describes two approaches to testing non-nested hypotheses. The two approaches, called 
the J-test and the P-test, are similar in concept but differ in form: the J-test is evaluated using a generalization of 
the two models that requires estimation by nonlinear methods; the P-test evaluates a generalization of two 
models based on a linear analysis (see Davidson and MacKinnon, 1993). Superficially, the P-test would appear 
to be the easier test to implement, but this is not necessarily the case. Neither test is implemented directly in 
SPARROW; however, as explained below, output from the SPARROW model can be used to implement either 
test as a follow-on exercise to a SPARROW analysis.  

To describe the two tests, suppose there are two competing specifications of a model explaining some 
dependent variable y. Both specifications are assumed to be nonlinear with respect to their parameters, although 
they may also be linear. [In fact, if the alternatives are both linear models, the J-test and the P-test are 
equivalent.] Let the alternative specifications be defined as  

 

(1.113)  ( )i iy x e= +β i

 
(1.114) i( )i iz u= +γ , y

where iy  is the dependent variable for observation i, ( )ix β  is the first model, which depends on the parameter 

vector , and β ( )iz γ  is the second model, which depends on the parameter vector . The error terms  and , γ ie iu
having respective variances  and , are each assumed to be identically and independently distributed across 2

eσ
2
uσ

observations, but may be correlated to each other for the same observation. 
The J-test is implemented by first estimating equation (1.114) using nonlinear least squares. The 

coefficients obtained from that estimation are used to form the prediction . The estimated  are then ( )ˆˆi iz z= γ ˆiz
inserted into the augmented model  
 

(1.115) , ( ) ( ) ˆ1i i iy α x zα ′= − + +β ie

which is estimated for the unknown parameters and β using nonlinear least squares. The null hypothesis under α
this specification is that equation (1.113) is the correct model. This hypothesis is evaluated by testing the 
ancillary hypothesis that = 0 using a simple t-test. The procedure is then reversed and the predictions from α
estimating equation (1.113), , are entered into the model ( )ˆˆi ix x= β
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(1.116) , ( ) ( ) ˆ1i i iy z xθ θ ′= − + +γ iu

to obtain nonlinear least squares estimates of and , with subsequent testing of the null hypothesis that θ = 0.  θ γ
There are four possible outcomes for this approach. If the hypothesis  is rejected and the 0α=

hypothesis  is not, we then conclude that the correct model is given by equation (1.114). If the hypothesis 0θ=
0θ=  is rejected and the hypothesis  is not, then the conclusion is that the model given by equation 0α=

(1.113) is correct. If both hypotheses are rejected, then we say that both models fit the data well and neither 
model shows the other to be misspecified. If we fail to reject both hypotheses, then the conclusion is that neither 
model is satisfactory. 

The P-test is implemented by first estimating equations (1.113) and (1.114) separately using nonlinear 

least squares and forming the predictions  and . Additionally, output from the ( )ˆˆi ix x= β ( )ˆˆi iz z= γ

SPARROW model will include the gradients from each model ( )ˆix ′β β  and ( )ˆiz ′γ γ . To test the null hypothesis 

that equation (1.113) is correct, ordinary least squares is used to estimate the model 
 

(1.117) ( ) ( )ˆˆ ˆˆi i i i i iy x x b z x eα′ ′′− = + − +β β , 

and the hypothesis that  is tested using an exact t-test. To test the null hypothesis that equation (1.114) is 0α=
correct, use ordinary least squares to estimate the complementary model 
 

(1.118) , ( ) ( )ˆ ˆˆ ˆi i i i i iy z z c x z uγ θ′ ′′− = + − +γ

and test the hypothesis that , again using an exact t-test. As with the J-test, there are four possible 0θ=
outcomes. The model in equation (1.113) is accepted in favor of equation (1.114) if we reject  and fail to 0θ=
reject . The model in equation (1.114) is accepted in favor of equation (1.113) if we reject  and fail 0α= 0α=
to reject . Both models are acceptable if both hypotheses are rejected, and if we fail to reject either 0θ=
hypothesis then neither model is satisfactory. 

1.6 Model Predictions 
SPARROW output contains prediction results paired with measures of accuracy. A number of technical 

issues can arise in the derivation of these statistics—most of these are caused by the nonlinear nature of the 
SPARROW model. The following sections provide a detailed description of the methods used to obtain 
prediction results using SPARROW. 

1.6.1 Prediction equation 
The prediction equation is similar to the calibration equation (1.27) given in section 1.4.1. Because 

predictions are generated for specific sources, however, it is necessary to decompose flux into source-specific 

components. Let  denote the reach i model-estimated flux associated with source n, and let,
*
i nF ,j nF ′  be the 

source-n flux from upstream reach j. If reach j is monitored (that is, j ∈I, where I is the set of monitored 
reaches), and predictions are conditioned on measured flux, then ,j nF ′  is apportioned from the measured flux 

M
jF  according to 
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(1.119) 
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Otherwise, if reach j is not a monitored reach (that is, j ∉ I) or predictions are not conditioned on measurements, 

then ,j nF ′  is set equal to . ,
*
j nF

The equation defining the model-estimated flux for source n, , is given by ,
*
i nF

 

(1.120) . 
( )

( ) ( ) ( ), , ,
* , ; , ; , ; ,S R D S R
i n j n i i i S R n i n n i D i i S R

j J i

F F A S D Aδ α
∈

⎛ ⎞⎟⎜ ⎟′ ′⎜= +⎟⎜ ⎟⎟⎜⎝ ⎠
∑ Z Z θ θ Z θ Z Z θ θ

The actual flux leaving reach i attributed to source n, denoted ,i nF , is based on the modeled flux  times a 

multiplicative error term. The predicted flux leaving reach i, denoted 

,
*
i nF

,i nF  is based either on the modeled flux 

 times the expectation of the exponentiated error or, if the prediction is conditioned on measurements, on the 

apportioned measured flux 

,
*
i nF

M
iF  using the apportioning method described in equation (1.119) (see section 1.6.6 

for additional discussion concerning the conditioning of predictions on flux measurements).  
An assumption of model estimation is that the model error, , for total flux is additive in logarithm 

space and independent across monitored nested basins i [recall from section 1.4.1 that a nested basin 
comprises all reaches upstream from monitored reach i, exclusive of reaches at or above all upstream monitoring 
stations]. In deriving predictions, particularly for disaggregated components of monitored flux, such as flux for 
non-monitored reaches or flux by source, it is necessary to add structure to the error properties of the model. The 
additional structure is needed to provide a basis for estimating prediction uncertainty. There is only one way this 
can be done while retaining the simple error structure assumed for estimation: to assume that every additive 
term in equation (1.120), for every reach i  within the nested basin of monitored reach i, is multiplied by the 

same multiplicative error term  associated with the monitored flux at reach i. Monitored reaches above 

the nested basin of reach i express a separate, independent, multiplicative error. If it is necessary to attribute a 
source to this error, the only model factor that appears with every additive term in equation (1.120) is the stream 

attenuation factor 

ie
I∈

′
( )exp ie

( )A ⋅  (or ( )A′ ⋅ ). Thus, the implicit assumption is that all model error is associated with 

unobserved in-stream attenuation processes. 
The error structure just described is certainly unrealistic. It implies the error covariance between reaches 

is determined arbitrarily by the location of monitoring stations: reaches within a nested basin are perfectly 
correlated; reaches on either side of a monitoring station are perfectly uncorrelated. It also implies a perfect 
correlation for errors associated with flux distributed to the individual topical sources (e.g., fertilizer, point 
sources, and atmospheric deposition). The assumed error structure requires estimates of incremental flux to be 
multiplied by the same error factor as total, accumulated flux. This can be rationalized by the assumption that 
error is scale invariant. Indeed, a number of SPARROW applications in the literature exhibit error that is 
approximately scale invariant (that is, the error has constant variance in logarithm space over the full range of 
observations; see Preston and Brakebill, 1999 and Moore and others, 2004). The national applications of 
SPARROW, however, show residuals that are not scale invariant (see, for example, Smith and others, 1997). 
Despite these shortcomings, the assumed error structure is the best we can do within the current SPARROW 
modeling framework. Future refinements to the model are planned that will allow for a much more general 
specification of error. 

Because the error terms in the SPARROW model are permitted to be heteroscedastic, it would make 
sense to assign the variance of the logarithm-transformed error term for nested basin i (that is, the error 
associated with the monitoring station i) to equal the variance that was used for purposes of weighting the 
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observation for model estimation. As shown in section 1.3.1, this variance has relevance for the expectation of 
the error term transformed back into real space. However, this is not what is done. For reasons that will be made 
clear later in the next section, a robust estimator of the expectation of the multiplicative error term, that is, the 
retransformation factor, is one that treats errors as interchangeable, implying they have a common distribution. 
In that case, the appropriate error term to apply in prediction is one that has a variance equal to the variance of 

the weighted residual, given by i iw e .  

Given these considerations, the predicted flux attributed to source n leaving reach i is  
 

(1.121) 
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∑  

where the retransformation factor we ε  is the expectation of the exponentiated weighted residual. 

1.6.2 Parametric predictions 
The discussion of prediction in this and remaining sections adopts a simplified notation—one that 

focuses on the role of coefficients and errors. To this end, we simplify the notation that associates a prediction to 
a specific source n, and simply note that the expressions given below pertain to the prediction of any reach-level 
flux quantity, including total flux, flux from the incremental watershed, accumulated flux by source, and 
incremental watershed flux by source. In section 1.6.6 we include additional comments regarding the special 
considerations required to make predictions of non-flux quantities. 

The relation between actual flux expressed in real space, , modeled flux, , and error for reach i is 

given by 
iF

*
iF

 

(1.122) , ( )* i
i iF F eε= β

where *
iF  is defined by equation (1.120) in section 1.6.1, , , ,D S R

′⎡ ⎤′ ′ ′ ′= ⎣ ⎦β α θ θ θ  is a collection of all model 

parameters, and i ie wε = i  is the weighted error term. In accordance with the efficient notation, we have 

expressed *
iF  as a function of its parameters only, suppressing the dependence of *

iF  on upstream monitored 

fluxes, MF . The expectation of  conditioned on model information (and upstream monitored fluxes), denoted iF

iF , is given by 

 

(1.123) ( )* i
i iF F eε= β , 

where ieε  is the expectation of the exponential of the error term. Because the exponential function is concave, 

by Jensen’s inequality, 1i ie eε ε> = . As explained in section 1.6.1, the SPARROW model used for prediction 

assumes all errors have the same distribution, implying ieε  can be replaced by eε , which is not reach specific. 
This value is referred to as the “retransformation” factor. 

The evaluation of equation (1.123) requires estimates of β and eε . The estimation of the SPARROW 

model provides estimates of both the coefficient vector, , and residual terms, , where N is the 

number of monitored reaches. If the underlying residuals were normally distributed, the retransformation factor 

β̂ ˆ ,  1, ,j jε = … N
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would be 
2 2e εσ ; if the estimated residuals were also derived using ordinary least squares, the expectation of an 

exponentiated estimated residual would be ( )( ) ( )( )2ˆexp exp 1 2j jE hεε σ= − , where ( ) 1
j j jh

−′=X X X X  is 

the residual’s leverage statistic. A more robust estimate of eε , one that does not depend on the residuals being 
normally distributed, is made by taking a simple average of the exponentiated, weighted estimated residuals, 

where the assigned weight for residual j is 1 1 jh−  (see equation (1.62) in section 1.5.1.3 for the determinants 

of the nonlinear analog to the leverage statistic), resulting in 
 

(1.124) 
ˆ 1

1

1 j j
N

h

j

e e
N

εε
∧

−

=

= ∑ . 

Such an estimate, called a Smearing estimator (Duan, 1983), is unbiased in small samples under the assumption 
of normality, and consistent (that is, unbiased in large samples) regardless of the underlying error distribution. 
For a nonlinear least-squares analysis such as SPARROW, the values of the Xj vector and X matrix in the 
observation-j leverage statistic are the gradients evaluated at the optimal parameter estimates (see section 1.5.1 
above). In this case, because the coefficients are unknown, the Smearing estimator is not unbiased in small 
samples, even if the residuals are normally distributed. However, the estimator remains consistent in large 
samples and the effect of weighting generally reduces bias in small samples. 

The values of the estimated parameters  and the Smearing estimator β̂ eε
∧

 are substituted for the 

unknown quantities and β eε  in equation (1.123) to obtain what is called a parametric estimate of Fi

 

(1.125) ( )* ˆ
î iF F eε

∧

= β . 

Because of the consistency of  and β̂ eε
∧

 (see section 1.5.2), the parametric estimate  is also consistent. In 

small samples, however, due principally to the nonlinearity of 

îF
*
iF , the expectation of  is not equal to îF iF . 

Moreover, the complex nature of the nonlinearity of  also implies there is no analytic function of  that is 

unbiased.  

*
iF β̂

1.6.3 Bias-corrected predictions based on bootstrapping (advanced) 
A widely used approach to bias correction is the bootstrap method. A typical bias-correction bootstrap 

analysis assumes bias is linear, so that bias is simply the difference between the expected value of the estimator 
and the true mean. This characterization of bias is inappropriate, however, if the desired estimate must always be 
positive, as it must for contaminant flux. To show this, consider the case in which you wish to estimate  and eμ

you have an unbiased estimate of , μ x , that is distributed normal with mean μ and variance . As explained 2σ
in section 1.3.1.2, the naïve estimator xe  is biased with bias given by  
 

(1.126) ( ) ( )2 2 1xB E e e e eμ μ σ= − = − .  

Consider the correction of this bias using the linear parametric bootstrap procedure (see section 1.5.3.1), 

in which R normally distributed random variables , with mean zero and variance , are generated to ( )rw 2σ
evaluate  
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(1.127) ( ) ( )1 ( )

1

exp exp
R

R r

r

B R x w−

=

= + −∑ x . 

The expectation of (1.127) is 
 

(1.128) ( ) ( )2 2 22 2 21RE B e e e Bμ σ σ σ+= − = . 

So the estimate of bias is itself biased and the “bias-corrected” estimate xe B− R  is not an unbiased estimate of 
μe , even for large R. In fact, the linear bootstrap bias correction procedure results in a bias-corrected estimate of 

eμ  that has expectation 
 

(1.129) ( ) ( )2 22 22x RE e B e eμ σ σ+− = − , 

which can be negative for sufficiently large values of . 2σ
An alternative approach is to express the bias as a ratio 

 

(1.130) 
( )xE e

b
eμ

= , 

with an associated bootstrap estimate given by 
 

(1.131) 

( )
( )

1 (
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−

=

+
=

∑ )w
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The bias-corrected estimate of μe  becomes  
 

(1.132) ( ) ( )
( ) ( )1 ( ) 1

1 1

exp 2

exp exp

x xR

R RR r r
r r

xe ee
b R x w R

μ

− −

= =

= = =
+∑ ∑ ( )w

. 

For large R, the denominator term goes to ( )2exp 2σ , implying the limit of the expectation of equation (1.132) 

is  
 

(1.133) ( )( )lim
R

R
E e eμ μ

→∞
= . 

In this case, therefore, the bootstrap ratio bias correction is unbiased. 
It is suspected that the ratio bias correction will work best in those cases, as above, in which the 

empirical distribution of the predictions in real space is skewed. A skewed distribution makes it likely that the 
average of the bootstrap predictions will have large variance, implying it is likely that the bootstrap average will 
exceed the parametric prediction. For applications in which the predictions from each bootstrap iteration are 
restricted to be positive, as occurs in cases where the parametric prediction for a strictly positive quantity—such 
as mass—is forced to be admissible, a skewed empirical distribution is virtually guaranteed. The high variability 
in the bootstrap average prediction in these applications makes it likely that an additive bias correction, which 
involves taking the negative of the average bootstrap prediction, will result in a negative estimate—a result that 
is inadmissible. The ratio form of bias correction represents a sort of weighting in which an unusually large 
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average bootstrap prediction has a proportionately smaller effect on modifying the parametric estimate, 
explaining its superior performance in the above example.  

All predictions generated by SPARROW are restricted to be positive values, implying the ratio form of 
bootstrap bias correction should perform better than the additive form. Accordingly, the proportional bias in the 
parametric estimate of  is given by iF
 

(1.134) 
( )î

i
i

E F
b

F
= . 

To compute the proportional bias coefficient, one needs the expectation of , which is a complex function of îF

the sample estimates  and β̂ eε
∧

 the joint distribution of which is unknown. The bootstrap method provides a 
paradigm for making the necessary inference. The basic idea is that Monte Carlo methods can be used to define 

an empirical joint distribution for  and β̂ eε
∧

, which bears a relation to the estimated parameter vector  and β̂

retransformation factor eε
∧

 that is analogous to the relation between the distribution of the estimates  and β̂ eε
∧

 

and the true values β and eε . Thus, under this paradigm, the estimation of the bias coefficient can be achieved 

by using the empirical distribution for  and β̂ eε
∧

 to evaluate the expectation in the numerator, and using the 

parametric estimate  to evaluate the denominator. îF
SPARROW implements two bootstrap approaches for generating the empirical distribution. The 

simplest and fastest approach, known as a parametric bootstrap, uses a random number generator to create 

alternative realizations of the  vector. Under the assumptions of nonlinear least squares (see section 1.5.2), the β̂
coefficient estimates are asymptotically normally distributed. Therefore, the parametric bootstrap generates R 

replications of the  vector, denoted by , r = 1, …, R, from a multivariate normal distribution with mean β̂ ( )ˆ rβ
and covariance equal to the nonlinear least squares estimates. Each set of randomly generated coefficients is 

used to compute a corresponding set of N residuals from which a retransformation factor 
( )r

eε
∧

 is derived using 

equation (1.124). 
A more robust bootstrap approach uses random sampling with replacement to generate the empirical 

distribution. Under this approach, random positive integer weights, summing to the number of reaches with 
monitored fluxes, are applied to the observations (see section 1.5.3.1 for a description of resampling). The 
weighted observations are used in the context of nonlinear weighted least squares to obtain bootstrap iteration r 

estimates of the coefficients, , and associated retransformation factors, ( )ˆ rβ
( )r

eε
∧

. Repeating this process R times 

generates R realizations of the  coefficient vector and retransformation factor ( )ˆ rβ
( )r

eε
∧

, which serves as the 
basis of the requisite empirical distribution. 

The R realizations of  and ( )ˆ rβ
( )r

eε
∧

 can be used to generate R realizations of . Define  to be the îF
( )ˆ r
iF

rth bootstrap replication of , where îF
 

(1.135) ( )
( )

( ) * ( )ˆˆ
r

r r
i iF F eε

∧

= β , 
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and let the average bootstrap estimate be 
 

(1.136) ( )

1

1ˆ ˆ
R

R r
i i

r

F F
R =

= ∑ . 

Using the bootstrap paradigm analogy, the bootstrap estimate of proportional bias is 
 

(1.137) 
ˆˆ
ˆ

R
R i
i

i

Fb
F

= . 

Therefore, the bootstrap proportional bias-corrected estimate of , denoted , is iF ˆ c
iF

 

(1.138) 
2ˆ ˆˆ

ˆ ˆ
c i i
i RR

ii

F FF
Fb

= = . 

Because all terms in this equation are positive, this estimate must also be positive. 

An important point to note is that although each bootstrap iteration estimate of  retains mass ( )ˆ r
iF

balance, the bias-corrected estimates do not. That is, the  have source shares that sum to one, and the sum ( )ˆ r
iF

of flux entering a confluence exactly equals the flux leaving the confluence. The effect of bias correction causes 
a breakdown in these restrictions because each estimate is corrected individually, without regard for global 
restrictions on mass balance. The absence of strict mass balance in the bias corrected predictions does not mean 
that SPARROW is not a mass balance model. In the limit, as sample size becomes large, the bias correction goes 
to zero and mass balance is retained; moreover, strict mass balance remains a property of the parametric 
estimates (see section 1.6.2). In order to obtain better individual predictions, however, it is necessary to loosen 
restrictions that pertain to the comparison of predictions. There are alternative approaches that retain mass 
balance but they come at a cost. One approach is to use linear bias correction, the same correction applied to the 
coefficient estimates (see above and section 1.5.3.1). Linear bias correction retains all the restrictions of mass 
balance; however, it also has the capacity to produce inadmissable negative flux estimates. An alternative 
estimation approach called Bayesian analysis could also resolve the mass balance problem. Bayesian analysis 
derives a posterior distribution for predicted quantities based on the posterior distribution of the coefficients. 
Because no bias correction of these predictions is necessary, the Bayesian predictions perfectly retain the mass 
balance restrictions. The estimation of Bayesian models, however, requires a significantly different estimation 
methodology that requires the evaluation of highly dimensioned integrals. The numerical accuracy of estimating 
a national SPARROW model in this way has yet to be evaluated (however, see the recent paper by Qian and 
others, 2005, for an example of a regional scale SPARROW model estimated using Bayesian methods). Given 
these tradeoffs, it was decided to sacrifice small sample strict mass balance in favor of estimates that are 
individually admissible. 

1.6.4 Prediction standard errors based on bootstrapping (advanced) 
The variance of the prediction error can be divided into two parts: the sample variance arising from 

sample error in the coefficient estimates, and the model variance arising from model error. Sample variance is a 
consequence of using a finite sample to estimate the model and will go to zero as the sample size becomes large. 
Model variance is fixed by the number of relevant predictors included in the model and can be lowered only by 
extending the model to include additional explanatory variables. Because the prediction formula is a nonlinear 
function of the parameters, bootstrap methods are required to estimate sample variance. Model variance is 
estimated with a robust method that does not require an assumed probability distribution. 
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Using the abstract model described in sections 1.6.2 and 1.6.3, prediction error can be expressed as  
 

(1.139) ( ) ( )ˆ ˆc c
i i i i i i iu F F F F F F= − = − − − . 

Prediction error is decomposed into a term depending solely on model error and a second term that depends only 
on sampling error. Because the model error for each reach is assumed to be independent of the model errors for 

all other reaches, the model error term and the sampling error terms are also independent. Because  is an ˆ c
iF

unbiased predictor of  (at least at first order), the expectation of prediction error is zero.  iF
The variance of prediction error is given by the sum of the variance caused by model error and the 

variance caused by sampling error. The variance caused by model error is given by  
 

(1.140) ( )( ) ( )( )( ) ( ) ( )
22 2* *i i i

i i i iE F F E F e e F V eε ε ε⎛ ⎞⎟⎜− = − =⎟⎜ ⎟⎟⎜⎝ ⎠
β β . 

A consistent estimator of this variance is given by  
 

(1.141) ( )( ) ( )
22 ˆ2 1ˆ ˆ ˆc h

i i iE F F F V e eε ε
∧

−− = , 

where  is given by equation (1.138), ˆ c
iF eε

∧

 is given by equation (1.124), and  

 

(1.142) ( )
2

ˆ 1ˆ 1 1
1

ˆ i i
N hh
i

V e N e eεε ε
∧

−− −

=

⎛ ⎞⎟⎜ ⎟⎜= − ⎟⎜ ⎟⎟⎜⎝ ⎠
∑ . 

The variance of the sampling error is predicated on the assumption that the bootstrap bias ratio  is a ˆR
ib

constant. An attempt to estimate a distribution for  would require a double bootstrap, a method that is ˆR
ib

computationally intractable given the complexity of the SPARROW model. Using bootstrap methods, the 
sampling error variance is  
 

(1.143) ( ) ( )( ) 2ˆˆ ˆ ˆ ˆR c r R
i iV F V F b= i , 

where ( ) ( )
2( ) 1 ( )

1
ˆ ˆ ˆ ˆRr r

i ir
V F R F F−

=
= ∑ R

i− . Equation (1.143) is derived by noting that, with  a constant, the ˆR
ib

variance of  equals ˆ c
iF ( )

2ˆˆ R
i iV F b , and the bootstrap paradigm is used to justify substituting ( )( )ˆ ˆ r

iV F  for the 

unknown variance ( )îV F . Combining the variances due to model and sampling error in equations (1.141) and 

(1.143), and taking note that ˆ ˆ ˆR
i ib F F= c

i  (equation (1.138)), the standard error of the prediction  is given ˆ c
iF

by 
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1.6.5 Prediction intervals based on bootstrapping (advanced) 

A prediction interval represents a stochastic interval that has a probability, , called the coverage cP
probability or confidence level, of including some unknown value of predictive interest. The derivation of this 
interval must account for two sources of uncertainty, the sampling error of the coefficients and the model error 
associated with the inability of the model to fully account for all factors determining the true value of the 
predicted variable. Because of the complex nonlinear relation between predictions and underlying coefficient 
estimates in SPARROW, it is not possible to base intervals on known parametric distributions—such as the 
normal distribution. The bootstrap method represents an alternative approach capable of overcoming this 
problem.  

A number of different bootstrap intervals have been proposed in the literature (Efron and Tibshirani, 
1993). These include the percentile interval, the bootstrap-t, a hybrid method, and an “accelerated” bootstrap 
method. Shao and Tu (1995) analyze these interval concepts, in the context of a confidence interval, to 
determine the relative rates at which the different interval’s coverage probability converges on the true 
confidence level. The results of that analysis show that all two-sided, equal-tailed intervals have equal accuracy 
in terms of the order in which the coverage probabilities converge. It is not clear, however, how relevant this 
discussion is with respect to prediction intervals. The reason is that prediction intervals, unlike confidence 
intervals, must incorporate uncertainty associated with a single model error—uncertainty that is not amenable to 
asymptotic convergence theorems (see section 1.5.2). Consequently, it is difficult to assess the relative 
accuracies of different prediction interval approaches.  

A second complication to be dealt with concerns the admissibility of the prediction interval. Predictions 
from the SPARROW model are always non-negative quantities, implying that in order for a prediction interval 
to be admissible, the interval must reside entirely in the space bounded from below by zero. As we saw in the 
discussion of bias in section 1.6.3, standard bootstrap methods do not guarantee admissible estimates. Some of 
the bootstrap interval methods listed above are admissible and some are not. Those that are not must be further 
modified to achieve admissibility. 

Finally, the prediction interval we derive must account for the fact that, because of the nonlinearity of 
the SPARROW model, standard predictions are biased. As shown in section 1.6.3, bootstrap methods provide an 
estimate of proportional bias that can be used to obtain an admissible, corrected estimate. As we show below, 
the presence of bias affects different intervals in different ways, with differing levels of complexity required to 
address the problem.  

We shall argue the merits of the various bootstrap prediction intervals in terms of their ability to 
accommodate the complications described above. To simplify and focus the discussion, the methods are 
compared in terms of their roles as confidence intervals: the extension of the methodology to obtain prediction 
intervals is discussed once a suitable method is decided. The percentile method is conceptually the simplest and 
was used to derive prediction intervals in earlier SPARROW papers (Smith and others, 1997, and Alexander and 
others, 2000). The interval is computed directly from the quantiles of the distribution of bootstrap replication 
estimates of the predictions, where the quantiles correspond to the percentiles representing equal probability in 
each tail and the share of the replications within the interval equals the coverage probability. Because each 
bootstrap replication is admissible, the quantiles forming the interval must also be admissible. The replications 
are not centered with respect to the parametric prediction. Therefore, if the replications are biased with respect 
to the parametric estimate, the bias would need to be removed in order to obtain an unbiased estimate of the 
interval. In fact, the bias would need to be removed twice: first to remove the bias between the bootstrap 
replications and the parametric estimate and second to remove the bias between the parametric estimate and the 
true value. 

The accelerated bootstrap method is like the percentile method in that it is derived directly from the 
quantiles of the empirical distribution, without centering. As such, it must be admissible. Like the percentile 
method, in order to obtain an unbiased interval the interval must be shifted by twice the bias factor. The specific 
quantiles forming the interval are selected in a complex manner that requires additional bootstrap replications, 
the added computations resulting in a more accurate interval. Given the high computational costs of obtaining a 
bootstrap replication in SPARROW, however, the use of this method presents significant computational 
challenges.  

The remaining bootstrap methods, the hybrid and bootstrap-t, are centered; that is, the empirical 
distribution is derived from bootstrap replication estimates that are expressed as differences from the parametric 
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estimate. The hybrid method, described in detail in section 1.5.3.2, uses bootstrap methods to determine the 
equal-tailed quantiles of the empirical distribution of the difference between the bootstrap replication estimates, 

( )ˆ r
iF  (see equation 1.135), and the parametric estimate,  (see equation (1.125). The bootstrap-t approach uses îF

bootstrap methods to determine the quantiles of the empirical distribution of , standardized (that is, ( )ˆ r
iF − îF

divided) by the standard error of . If the standard error of  were known, the standardization would have no îF îF
effect on the determination of quantiles as compared to the hybrid method except to divide each quantile by the 

standard error of . As such, the bootstrap-t and hybrid approaches would be equivalent. The two methods are îF

not equivalent if the standard error of  is not known. In this case, the bootstrap-t approach requires a nested îF
bootstrap; for each bootstrap iteration, a separate set of bootstrap replications must be generated to compute an 
independent, iteration-specific, estimate of the standard error. The empirical distribution then pertains to a 
random variable that has two sources of variation: deviation around the parametric estimate and the standard 
error used to normalize the difference. 

The intervals derived from the hybrid and bootstrap-t methods are immutable to the presence of additive 
bias in the distribution. To see why this is so, consider a simple example in which x̂  is a biased prediction of x . 

Let the distribution of the estimate x̂  be biased by an additive amount B with respect to *x̂ , an unbiased 

estimator of x. Thus, *ˆ ˆx x= + B  and ( ) ( )*ˆ ˆE x E x B x= + = + B . For quantile q, define 

( ) ( )ˆ ˆPrx xH q x x q− = − ≤  to be the distribution of x̂ x− , and define ( ) ( )ˆ*
** ˆPrx xH q x x q− = − ≤  to be the 

distribution of *ˆ ˆx x x x B− = − − . Let  and ( )q p ( )*q p  represent the quantiles of x̂ xH − and ˆ*
*
x xH −  

corresponding to probability p; that is, ( )( ) ( )( )ˆ ˆ*
**

x x x xp H q p H q p− −= = . Because bias is additive, we have 

( ) ( )ˆ ˆ*
*

x x x xH q H q B− −= − ; the distribution ˆ*
*
x xH −  is just the distribution x̂ xH −  shifted by an amount –B, 

implying . The equal-tailed prediction interval having coverage probability  derived ( ) ( )*q p q p B= − cP

from x̂ xH −  satisfies the relation ( )( ) ( )( )( )ˆ ˆPr 1 2 1 2c c cx q P x x q P− − ≥ ≤ − + ≥ P , implying the upper and 

lower bounds of the confidence interval are ( )( )ˆ 1 2cx q P− −  and ( )(ˆ 1 cx q P− + )2 . But, because bias is 

additive, we have ( ) ( )* *ˆ ˆx q p x q p− = − ; effectively, the bias causing the shift in the distribution of the 

statistic, which causes a shift in the quantile, is nullified by the bias arising in the statistic used to form the 
interval. Therefore, the prediction interval derived from additively biased centered statistics is equivalent to the 
confidence interval derived from bias adjusted statistics, which is the point we wished to establish. 

The centering of the distributions raises the possibility that the interval will be inadmissible. This 
happens for the same reason the additive bias correction leads to inadmissible estimates (see section 1.6.3): the 
distributions of variables restricted to be positive tend to be skewed towards the high end. In fact, inadmissibility 
is more likely in this case because it is the potentially highly skewed right tale quantile that is subtracted from 
the parametric estimate to form the interval’s lower bound. 

One way to ensure admissibility using centered intervals is to transform the analysis into logarithmic 
space. The complication of bias is avoided if it is also assumed that bias is additive in logarithm space, in which 
case, as shown above, no further adjustments are necessary. Thus, all complications in forming an interval can 
be handled by adopting a centering method. In comparing the hybrid method with the bootstrap-t, the hybrid 
method is clearly easier to compute. The bootstrap-t requires the difference between the bootstrap replication 
estimate and the parametric estimate to be normalized by the standard error of the replication estimate prior to 
forming the empirical distribution. Because the bootstrap replication estimate is not a simple function of the 
data, such as a mean, the estimation of the standard error requires a separate bootstrap analysis for each 
bootstrap iteration (note, if only a single standard error were used for all bootstrap replications the bootstrap-t 
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method would default to the hybrid method). The computational burden of doing a double bootstrap analysis in 
the context of a SPARROW analysis makes the bootstrap-t method impractical. 

We are left, then, with weighing the advantages and disadvantages of the hybrid and percentile methods. 
Both methods are approximately equal with respect to computational intensity, and both provide admissible 
intervals. Whereas the percentile method requires an estimate of bias in order to unbias the interval, the hybrid 
method accommodates bias without the need to estimate it. The hybrid method is also conceptually stronger. 
The standard premise underlying a confidence interval is that the shape of the distribution is known (or 
assumed) but the location with respect to the variable the interval is designed to cover is not known. This same 
premise underlies the empirical distribution used with the hybrid method. Thus, the hybrid method exemplifies 
the bootstrap paradigm by simply substituting the empirical distribution for the parametric distribution; the rest 
of the method is the same as the standard approach. Conversely, the percentile method contains the implicit 
assumption that not only is the shape of the distribution known, but also its location with respect to the true 
value. If this were in fact the case, there would be no need for a random interval to localize the true, unknown 
value; a simple mean of the distribution would reveal the true value with certainty. Given these considerations, 
therefore, we adopt the hybrid method to derive prediction intervals in the SPARROW model. 

As explained above, the prediction interval is derived in logarithm space. Accordingly, the distribution 
underlying the prediction interval is for the random variable 
 

(1.145) . ( ) ( ) ( )* * *ˆ ˆln ln ln lni i i iF F F F− = − −β β ieβ

The source of uncertainty in equation (1.145) is given by the term , where  is the nonlinear ( )* ˆln iF −β ie β̂
weighted least squares estimate of the coefficient vector. Note that an estimate of the retransformation bias 
factor, or its logarithm transform, is not present in equation (1.145). Although the retransformation bias factor is 
a determinant of predictions, it is not required for the development of the prediction interval.  

Let the cumulative distribution for equation (1.145) be given by . The standard approach to the ( )iH x
determination of prediction intervals assumes this distribution is known, in which case the quantiles 

(( ))1 1 2i cH P− −  and ( )(1 1i cH P− + )2  satisfy the relation 

 

(1.146) ( )( ) ( ) ( ) ( )( )( )1 1* *ˆPr 1 2 ln ln 1 2i c i i i i cH P F e F H P− −− ≤ − − ≤ + ≥β β cP , 

where  is the prediction interval coverage probability (that is, the confidence level). The corresponding cP
bounds on the prediction interval are 
 

(1.147) ( ) ( )( ) ( ) ( )( )* 1 * 1ˆ ˆln 1 2 ,  ln 1 2i i c i i cF H P F H P− −⎡ ⎤
− + − −⎢ ⎥

⎢ ⎥⎣ ⎦
β β . 

The bootstrap analog of  is given by the empirical distribution ( )iH x ( ),i RH x  corresponding to the R 

replications of the random variable  
 

(1.148) ( ) ( ) ( )( )* ( ) *ˆ ˆˆln 1 ln
rr

i ii
F e h F− − −β β , 

where  is the estimate of β  using the r( )ˆ rβ th bootstrap replication of the resampled observations (see section 

1.6.3), and ( ( )
ˆ 1

r

i
e h− )  is the rth random draw from the N leverage-adjusted error estimates obtained from the 

SPARROW model estimated with the original (non-resampled) data. Note that the empirical distribution is fully 

 
 



 The SPARROW Surface Water-Quality Model: Theory, Application and User Documentation 110 

non-parametric; neither the coefficient estimates nor the underlying errors are required to be normally 
distributed. 

The appropriate quantiles of the empirical distribution are obtained by ordering the R estimates of 

( ) ( )( )* ( )ˆ ˆln 1
rr

i i
e h− −βF  in ascending order. Let ( )iq s�  correspond to the sth ordered value in this list. The 

quantiles forming the bounds of the prediction interval are given by (see appendix A for an explanation of the 
appropriate ranks) 
 

(1.149) 
( ) ( ) ( )
( ) ( ) ( )

1 *
,

1 *
,

ˆ(1 ) 2 (1 ) 2 1 ln ,  and 

ˆ(1 ) 2 (1 ) 2 ln .

i R c i c i

i R c i c c i

H P q R P F

H P q P R R P F

−

−

⎢ ⎥− = − + −⎣ ⎦

⎡ ⎤ ⎢ ⎥+ = + − −⎢ ⎥ ⎣ ⎦

β

β

�

�
 

The term ( )* ˆln iF β  does not vary across the bootstrap replications so it is simply subtracted from the ranked 

bootstrap replications.  
Substituting these quantiles for the parametric ones in equation (1.147) gives the bootstrap hybrid 

prediction interval in logarithm space; the prediction interval in real space is obtained by transforming the 
resulting bounds by the exponential function. In order to focus on the defined interval in real space, define 

( )( )1 2i cq P−  and ( )( 1i cq P+ )2  to be the ( )1 2cR P 1⎢ ⎥− +⎣ ⎦  and ( )1cP R R P 2c
⎢ ⎥⎡ ⎤ + −⎢ ⎥ ⎣ ⎦  ranked values of 

( ) ( )( )( )* ( )ˆ ˆexp 1
rr

i i
F e h−β . The prediction interval in real space is given by 

 

(1.150) 
( )

( )( )
( )

( )( )

2 2* *ˆ ˆ
,

1 2 1
i i

i c i c

F F

q P q P

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥+ −⎢ ⎥⎣ ⎦

β β

2
. 

Note that the prediction interval in equation (1.150) collapses to zero if  is zero. Such a result is ( )* ˆ
iF β

appropriate if there are no sources of a contaminant for reach i; it is less defensible if the zero value results from 
a constrained estimate of the coefficients (for example, if there is only one non-zero source for a reach but the 
source coefficient for that source is set at its constrained value of zero).  

The prediction interval is potentially undefined if either the lower or upper quantiles ( )( )1 2i cq P−  or 

( )( )1 2i cq P+  are zero. This could happen for the same reasons that  becomes zero. As explained ( )* ˆ
iF β

above, if the zeros result from no sources, then the prediction interval is properly defined as a point at zero. If a 
zero results from a constrained coefficient, then the interval is effectively unbounded. At present, SPARROW 
does not distinguish between these two potential outcomes and reports a bound of zero for all cases in which 
either the numerator or denominator is zero. Note, however, that a bound of zero may be appropriate in the case 
of a source coefficient going to zero because the numerator, being squared, goes to zero faster than the 
denominator. 
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1.6.6 Discussion 
The prediction methods described above are applied to every prediction generated by SPARROW 

having the same units as the dependent variable (units of mass). That is, the same methodology used to derive 
prediction results (bias-corrected predictions, standard errors and prediction intervals) for total flux is used to 
derive prediction results of flux by source, incremental flux (total and by source), flux in reservoirs, flux without 
in-stream decay (total and by source), etc. The predictions of flux by individual source each receive the same 
retransformation-bias correction factor under the assumption that the error for the reach is due to a common 
multiplicative error shared by each of the sources—an assumption that causes the sum of fluxes by individual 
source to equal total flux. Accordingly, to compute the variance and prediction intervals, a common 
multiplicative error term, equal to the reach’s total flux multiplicative error, is assumed to apply to each source 
term. This ensures these predictions display model error that approximately adds up to the model error of the 
reach’s total flux. It is, however, a strong assumption that overstates the true correlation between these 
predictions. 

Additional predictions that can be derived directly from the flux predictions are the contaminant yield 
and concentration. The prediction of yield is obtained by simply dividing the flux prediction by the area of the 
region that generated the flux. Because area is known, the estimate of uncertainty for yield is simply the estimate 
of uncertainty for flux divided by area. A prediction of mean flow-weighted concentration is obtained in similar 
fashion by dividing the prediction for flux by the mean streamflow (see the discussion in section 1.3.1). If 
streamflow is precisely known, the uncertainty of this estimate is simply the uncertainty of flux divided by mean 
streamflow. 

Given the rather coarse assumptions regarding the error structure in SPARROW (see section 1.6.1), it is 
best to treat each prediction (total, incremental, and flux by source) as an independent estimate. The estimate of 
uncertainty associated with disaggregated quantities (for example, flux by source) is meant to be suggestive 
pending a more rigorous analysis of error structure. One should be particularly wary of trying to infer 
uncertainty of aggregate quantities that represent averages of individual reach results. The simplifying 
assumptions regarding error in SPARROW produces a correlation structure that is not sufficient to make a 
reliable estimate of aggregate uncertainty; the estimates of error at an individual reach are more defensible.  

A different kind of simplifying assumption is adopted for predictions that are not evaluated in the units 
of the dependent variable. Such predictions are typically for unitless quantities—for example, the share of flux 
delivered to a target reach. Because these variables are generally ratios of masses, the retransformation factors in 
the numerator and denominator should effectively cancel. Therefore, the prediction of these unitless variables 
does not receive a retransformation-bias correction factor. Accordingly, their standard errors do not include a 
model error component and the empirical distributions used to evaluate their confidence intervals do not account 
for variations due to model error. It is certainly presumptive to assert these unitless predictions exhibit no 
idiosyncratic variation; but in the absence of any estimate of the magnitude of this variation, it would be hard to 
justify a less conservative assumption. As remarked above, this problem can be resolved by adopting a richer 
error structure, one that allows for the estimation of the magnitude of idiosyncratic variation associated with 
individual processes.  

As remarked in section 1.6.1, it is possible in SPARROW to condition predictions on measured flux at 
monitored reaches. This capability implies that predictions for all reaches at or below the monitored reach will 
be adjusted to be consistent with the measured flux. It is important to understand, however, that this capability 
does not necessarily imply that predicted flux immediately downstream of a monitored reach will be close in 
value to the measured flux. This is because of the assumed error structure for the model in which the error at the 
downstream reach is assumed to be independent of the error for the upstream reach. Recall from section 1.6.1 
that a prediction is composed of two parts: a modeled component that depends only on the source, land-to-water, 
and in-stream processes specified in the SPARROW model, and an error component that is manifested in the 
prediction through the application of a retransformation factor. Because the measured flux at the monitored 
reach incorporates the model error directly, it is not appropriate to apply a retransformation factor to this flux; 
such an application would effectively double count the error process. The prediction for the reach immediately 
downstream of the monitored reach, however, does receive the retransformation factor. Thus, although the 
modeled flux at the downstream reach may be very close in value to the measured flux, the application of the 
retransformation factor necessary for obtaining the complete prediction, which could represent a large 
adjustment, may result in a predicted flux that differs from the measured flux by a considerable amount. 
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It should also be noted that if the SPARROW model is run in prediction mode for purposes of 
simulating water-quality conditions under alternative management scenarios, then it is not appropriate to 
condition the predictions on measured flux at monitored reaches. The measured flux is consistent with 
management actions actually taken. As such, the conditioning of predictions on measured flux would not 
incorporate the changes in water quality associated with the alternative management scenario. For purposes of 
comparison, therefore, it is reasonable to obtain predictions for both existing conditions and alternative 
management scenarios that are not conditioned on measured flux.   

1.6.6.1 The effect of error in measured flux (advanced) 

Section 1.5.3.5 discusses the potentially biased coefficient estimators that result from estimation with 
dependent variable data that are measured with error. The bias arises because the dependent variable is a 
conditional estimate of flux; although the difference between unobserved true flux and estimated flux is 
orthogonal to estimated flux, it is not necessarily orthogonal to the SPARROW model predictors. The absence 
of this orthogonal variation in the dependent variable, which is a real variation in true flux, implies the model 
coefficients are biased if the explanatory variables are capable of explaining part of it. It is shown in section 
1.5.3.5 that information on the error of the monitored flux estimate and coefficient and model error in the 
SPARROW model can be used to bound the bias. 

The problem of incomplete variation in the dependent variable causes a similar problem for the 
assessment of prediction uncertainty (see Mullaney and others, 2002, for a discussion of this problem in the 
context of a time series model of flux). In standard assessments of prediction error, the model mean squared 
error incorporates all residual variation not accounted for by the model. If the dependent variable is a conditional 
estimate of the true dependent variable, however, the error in measured flux potentially represents additional 
variation not accounted for by the model. A complication in the assessment of total model error is that the 
measurement error could be correlated with the model error associated with the measured component. 
Unfortunately, it is not possible to precisely estimate this correlation, making it impossible to fully assess the 
error of the model; however, as with the case of estimation, it is possible to place bounds on the extent of this 
“missing” error component. 

To solidify concepts, let iy  be the true value of the logarithm of flux at reach i and let iy�  represent the 

measured component. As in section 1.5.3.5, let  be the difference between true and measured logarithm of iu
flux, so that 
 
(1.151) i i iy y u= +� , 

where  is assumed to be orthogonal to iu iy� , having variance . Let 2
uσ iy�  be divided into two components, a 

component that is “explained” by the model, ix , and a model error component, , assumed to be orthogonal to ie

ix . The relation between true flux and model-explained flux is 

 
(1.152) i i i iy x u e= + + . 

The measured mean squared error of the model is given by ; however, the full model error is not 2
eσ

necessarily equal to . This is because the terms  and  could be correlated. To see how this might 2
eσ σ+ 2

u iu ie
arise, note that orthogonality between  and iu iy�  implies . If the model ( ) ( ) ( ) 0i i i i i iE u y E u x E u e= +� =

predictors are correlated with measurement error term , as was the case discussed in section 1.5.3.5, then iu
( )i iE u x  is not equal to zero. Consequently, ( )i iE u e  must be different from zero also. The variance of the full 

model error takes the form 
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(1.153) , ( ) 2 2 2i i u e ue uV u e σ σ ρ σ σ+ = + + e

where  is the correlation coefficient between  and .  ueρ iu ie
Without data on true flux, it is impossible to know the value of , and so it is impossible to know the ueρ

exact value of full model error. However, by recognizing that the correlation coefficient must be between –1 and 
1, it is possible to place bounds on this error. Setting the correlation coefficient to its extreme values, we see that 

the full model variance  must have the bounds ( i iV u e+ )
 

(1.154)  ( ) ( ) (2 2 .e u i i e uV u eσ σ σ σ− ≤ + ≤ + )

As was the case in section 1.5.3.5, the bounds can be evaluated using results from flux estimation and 
SPARROW model output. The root mean squared error from the SPARROW model is , and  represents eσ uσ
the average across all stations of the ratio of the standard error of measured flux to the estimate of measured 
flux. 

There is no simple way of using these bounds to modify the standard errors of predictions or prediction 
confidence intervals generated by SPARROW. This is because these estimates are derived using robust non-
parametric methods (a combination of the smearing estimator and bootstrapping). One approach that is likely to 
give reasonable approximate estimates is to rescale the estimated model error terms prior to prediction by the 

factor e uσ σ σ− e  to obtain the lower bound on model error and by ( )e uσ σ σ+ e  to obtain the upper bound. 

However, this feature is not currently implemented in SPARROW. 

1.6.7 Share of flux delivered to a target reach 
An additional prediction of general interest included in standard SPARROW output is the fraction of 

flux leaving a reach that is delivered to some downstream target reach. In many applications, the target is a 
waterbody of some interest to water-quality managers, examples being estuaries or reservoirs. In the case in 
which there is only one such target downstream from any given reach, the fraction delivered represents the 
amount of flux leaving the reach that makes its way through the reach network to the target. If there are multiple 
target reaches downstream from a given reach, the fraction delivered is interpreted as the fraction of flux leaving 
the reach that is delivered to the nearest downstream target reach. 

The method used to compute the fraction of flux delivered to a target reach accounts for all in-stream 
attenuation processes defined in the model. If reservoirs represent large sinks for the contaminant being studied 
and the target is an estuary, then the fraction delivered should be small for all reaches upstream of a reservoir. If 
there is larger in-stream decay in small streams as compared to large streams, as has been found in SPARROW 
models of total nitrogen, then a map (figure 1.28) of fraction delivered to estuaries shows the fraction delivered 
becomes smaller the higher in the network the reach is located. Conversely, a map of the fraction delivered for a 
contaminant that is very conservative in streams and reservoirs shows little variation across the network. 

The method used in SPARROW to compute the fraction of flux delivered to a target accounts for 
diversions in the reach network. To understand how this works, it helps to understand something about the 
algorithm used to compute the share of flux delivered. The calculation of the fraction delivered is a reach 
accumulation process that works in reverse. That is, in normal applications of the SPARROW model, prior to 
the analysis, reaches are ordered in hydrologic order from upstream to downstream, and the model is processed 
by accumulating flux in the downstream direction. As long as the ordering is accurate, no reach is processed 
prior to processing all upstream reaches. Where a diversion is encountered, the flux going to each reach 
immediately downstream from the diversion is determined by the “fraction-diverted” variable. The sum of the 
“fraction-diverted” variable is always one across all diverting reaches (see section 1.3.2), so no flux is lost in the 
process of diversion unless one of the diverted streams terminates—that is, fails to reconnect with the stream 
network.  

For the computation of fraction delivered, the ordering of reaches is exactly reversed. The analysis 
begins at the target and the fraction delivered to the target is modified at a reach by multiplying by that reach’s 
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incremental delivery fraction. Moving in the upstream direction, if two reaches are joined at a diversion, the 
cumulative fraction delivered from each downstream reach is multiplied by that reach’s “fraction-diverted” 
variable prior to being aggregated. In this way, the fraction delivered represents the average rate of delivery 
across the multiple possible pathways between the reach and the downstream target. Note also that if a diverted 
reach terminates before reaching a target, the fraction delivered at the point of the diversion is effectively 
reduced by the “fraction-diverted” amount.  

 

Figure 1.28. SPARROW model estimates of in-stream nitrogen delivered to the Gulf of Mexico. [From Alexander and others 
(2000).] 
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1.7 Summary 
This completes the discussion of the concepts and theory underlying the SPARROW surface-water 

model. The SPARROW model is shown to derive from a few simple concepts—mass balance, spatial 
referencing, and mean annual flux. A rigorous statistical methodology exists for estimating the model and for 
deriving predictions from it. The results of a SPARROW analysis can be used to test hypotheses regarding 
hydrologic processes, characterize mean conditions, perform a mass balance accounting of the sources of flux, 
or simulate alternative management scenarios. Perhaps the most important feature of the SPARROW model, 
however, is the close connection forged between the results of an application and the basic hydrologic data from 
which they are derived—a connection that adds considerable credibility to the findings. 

Although substantial progress has been made in applying the SPARROW methodology to a number of 
water-quality constituents across diverse hydrologic settings, there is still much work that needs to be done. 
There are many contaminants that have yet to be included in a SPARROW analysis—the analysis of biological 
data represents one particularly fertile area for future research—and additional insights will be gained by the 
development of multi-year and seasonal mean flux models. Many of these prospective analyses can be 
performed within the existing SPARROW framework; however, there are also many analyses that will require 
modifications to the methodology. For example, an extension of the basic SPARROW model to facilitate the 
simultaneous analysis of multiple contaminants will permit the analyses of nitrogen species and suites of 
pesticides. The development of a more flexible error structure will provide more defensible model predictions—
particularly predictions of aggregated water conditions.  

The basic SPARROW methodology described in Part 1 is fully implemented in a model written for the 
SAS computer software. A detailed description of the model in terms of model specification, required data 
input, and model output is contained in Part 2 of this documentation. Many of the hydrologic processes 
introduced in Part 1 of the documentation are further discussed in Part 2 as examples of feasible SPARROW 
model specifications.  
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